
An Õ(mn) Gomory-Hu Tree Construction Algorithm for
Unweighted Graphs

Anand Bhalgat∗ Ramesh Hariharan† Telikepalli Kavitha‡ Debmalya Panigrahi§

ABSTRACT
We present a fast algorithm for computing a Gomory-Hu
tree or cut tree for an unweighted undirected graph G =
(V, E). The expected running time of our algorithm is Õ(mc)
where |E| = m and c is the maximum u-v edge connectivity,
where u, v ∈ V . When the input graph is also simple (i.e.,
it has no parallel edges), then the u-v edge connectivity for
each pair of vertices u and v is at most n−1; so the expected
running time of our algorithm for simple unweighted graphs
is Õ(mn).

All the algorithms currently known for constructing a
Gomory-Hu tree [8, 9] use n − 1 minimum s-t cut (i.e.,
max flow) subroutines. This in conjunction with the cur-

rent fastest Õ(n20/9) max flow algorithm due to Karger and

Levine[11] yields the current best running time of Õ(n20/9n)
for Gomory-Hu tree construction on simple unweighted graphs
with m edges and n vertices. Thus we present the first
Õ(mn) algorithm for constructing a Gomory-Hu tree for
simple unweighted graphs. We do not use a max flow sub-
routine here; we present an efficient tree packing algorithm
for computing Steiner edge connectivity and use this algo-
rithm as our main subroutine. The advantage in using a tree
packing algorithm for constructing a Gomory-Hu tree is that
the work done in computing a minimum Steiner cut for a
Steiner set S ⊆ V can be reused for computing a minimum
Steiner cut for certain Steiner sets S′ ⊆ S.

Categories and Subject Descriptors: F.2.2[Theory of
Computation]: Nonnumerical Algorithms and Problems

General Terms: Algorithms

∗Indian Institute of Science, Bangalore.
anand@csa.iisc.ernet.in
†Strand Life Sciences and House of Algorithms, Bangalore.
ramesh@strandls.com; work partly done when at IISc.
‡Indian Institute of Science, Bangalore.
kavitha@csa.iisc.ernet.in
§Bell Labs Research, Bangalore.
pdebmalya@bell-labs.com; work partly done when at
IISc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’07, June 11–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

Keywords: Steiner edge connectivity, cut trees, Gomory-
Hu trees, min cuts

1. INTRODUCTION
Let G = (V, E) be an undirected graph with |V | = n and

|E| = m. The edge connectivity of two vertices s, t ∈ V ,
denoted by λ(s, t), is defined as the size of the smallest cut
that separates s and t; such a cut is called a minimum s-t
cut. Gomory-Hu trees, also known as cut trees, represent
the structure of minimum s-t cuts for all pairs of vertices s
and t of an undirected graph in a compact way.

Gomory and Hu [8] in a classical result in 1961 showed
that the edge connectivities of all pairs of vertices in an undi-
rected graph can be computed using n− 1 (rather than the
näıve

(
n
2

)
) max-flow computations. Their algorithm com-

putes a weighted cut tree T , known as the Gomory-Hu tree,
on V , with the property that the edge connectivity between
any two vertices s and t in the graph exactly equals the
weight of the minimum weight edge on the unique s-t path
in T . Further, the partition of the vertices produced by re-
moving this edge from T is a minimum s-t cut in the graph.
Gomory-Hu trees have many applications in multi-terminal
network flows. Examples were shown by Benczúr[2] that cut
trees do not exist for directed graphs.

All known algorithms for building Gomory-Hu trees in
undirected graphs use a minimum s-t cut subroutine (which
is the same as an s-t max flow algorithm). Gomory and Hu
showed how to compute the cut tree T using n−1 max flow
computations and graph contractions. Gusfield proposed
an algorithm that does not use graph contractions; all n− 1
max flow computations are performed on the input graph.
Goldberg and Tsioutsiouliklis [7] did an experimental study
of the Gomory-Hu and Gusfield’s algorithms for the cut tree
problem and described efficient implementations of these al-
gorithms.

Any max-flow based approach for constructing a Gomory-
Hu tree would have a running time of (n−1)·(time for com-
puting a max flow). Till now faster algorithms for Gomory-
Hu trees were by-products of faster algorithms for comput-
ing a max-flow [6]. The current fastest Õ(n20/9) max flow
algorithm due to Karger and Levine [11] yields the current

best running time of Õ(n20/9n) for Gomory-Hu tree con-
struction on simple unweighted graphs with m edges and n
vertices.

In this paper we consider the problem of designing a faster
algorithm for constructing a Gomory-Hu tree; thus our al-
gorithm cannot use n− 1 max flow subroutines in the input
graph. We show the following theorem here.

Theorem 1. Let G = (V, E) be a simple unweighted graph
with m edges and n vertices. Then a Gomory-Hu tree for G
can be built in expected time Õ(mn).

Thus our algorithm is always faster by a factor of Ω(n2/9)
(ignoring polylog n factors) compared to the previous best
algorithm. Our Gomory-Hu tree algorithm achieves a run-
ning time of Õ(mn) by using an efficient construction of tree
packing. Gabow [5] gave an efficient construction of span-
ning tree packing (actually arborescence packing but with
relaxed directions, henceforth called directionless trees) that

yielded an Õ(mk) algorithm to determine the global edge
connectivity, k = minu,v∈V λ(u, v), of a directed graph with
m edges. This approach was generalized by Cole and Har-
iharan [3] for determining the Steiner edge connectivity of
an undirected graph or an Eulerian directed graph. For any
Steiner set S ⊆ V , their algorithm runs in time Õ(mk2)
where k = minu,v∈S λ(u, v). For undirected graphs, the

running time of their algorithm improves to Õ(m + nk3).
The algorithm in [3] was used by Hariharan et al. in [10]

to design an algorithm with expected running time Õ(m +
nk3) to compute a partial Gomory-Hu tree for representing
the λ(u, v) values for all pairs of vertices u, v that satisfied
λ(u, v) ≤ k.

Our Techniques.
Our algorithm extends the method used in [10] that com-

putes all small λ(u, v) values. The main idea in [10], to
compute all λ(u, v) values that are at most k, is to use the

Õ(m+nk3) Steiner edge connectivity algorithm of Cole and
Hariharan [3] as the main subroutine instead of a max-flow
algorithm. Recall that this Steiner edge connectivity algo-
rithm is based on an efficient construction of tree packing.
The algorithm in [10] constructs these trees by choosing the
root vertex of these trees uniformly at random from the set
S of vertices, whose minu,v∈S λ(u, v) value is to be deter-

mined. It was shown that in expected time Õ(m + nk3), all
the trees required to estimate the λ(u, v) values which are
at most k can be built. However this method does not yield
interesting results for large k, for instance when k = Θ(n),

it would take Θ̃(n4) time to compute all u-v edge connec-
tivities which are at most k; it is instead more efficient to
construct a Gomory-Hu tree using n− 1 max flows.

We obtain our efficient algorithm for constructing a Gomory-
Hu tree as follows:

• We present an improved tree packing algorithm for the
Steiner edge connectivity problem1. For a Steiner set
S ⊆ V , our algorithm determines the minu,v∈S λ(u, v)
value and a vertex partition corresponding to this cut
in time Õ(m · (minu,v∈S λ(u, v))).

• It follows from the analysis in [10] that the above sub-
routine for computing Steiner edge connectivity yields
a Gomory-Hu tree algorithm with expected running
time Õ(m + nc2), where c = maxu,v∈V λ(u, v). We
give an improved analysis here and show that the ex-
pected running time of our algorithm in unweighted

1we would like to point out that any fast Steiner edge con-
nectivity algorithm does not suffice here; our main algorithm
needs an efficient subroutine for the problem: given a graph
G′ and a vertex r in G′, compute all min r-x cuts for vertices
x in G′.

graphs is Õ(mc). [Note that m can be much smaller
than nc.]

• This implies an Õ(mn) algorithm for constructing a
Gomory-Hu tree when the input graph is simple and
unweighted, since maxu,v∈V λ(u, v) ≤ n − 1 in such
graphs.

It follows from [10] that other corollaries of our efficient
Steiner edge connectivity algorithm are (i) an algorithm with

expected time Õ(m+nk2) for building a partial Gomory-Hu
tree2 corresponding to parameter k; (ii) an algorithm with

expected time Õ(m+nk2) algorithm that splits a given T ⊆
V of even cardinality into two odd cardinality components
such that the size k of the resulting cut is minimized.

1.1 Preliminaries
We review the Gomory-Hu tree construction algorithm

from [8] now. The algorithm to construct a Gomory-Hu
tree uses submodularity of cuts stated below as Fact 1.

Fact 1 (Submodularity of cuts). If A and B are
two subsets of vertices in G and δ(X) represents the size of
the cut (X, V \X), then δ(A)+ δ(B) ≥ δ(A∩B)+ δ(A∪B).

Fact 1 leads to the following theorem, which is used in the
Gomory-Hu tree construction algorithm.

Theorem 2. If (S, V \ S) is a minimum s-t cut in G
and u, v are any pair of vertices in S, then there exists a
minimum u-v cut (S∗, V \ S∗) such that S∗ ⊂ S.

The Gomory-Hu tree construction algorithm [8] initializes
the cut tree T to a single node that contains the entire
vertex set. At any step of the algorithm, it picks a node
S of T containing more than one vertex and chooses any
two vertices s and t in S. The entire subtree subtended at
each neighbor of S is contracted into a single node and a
max flow computation is performed from s to t in the new
graph. Theorem 2 ensures that the minimum s-t cut thus
obtained (we call it C) is also a minimum s-t cut in the
original graph. Now, in T , the node S is split into S1 and
S2 according to C and the two nodes thus formed are joined
by an edge of weight equal to the size of C. Further, all
the neighboring subtrees of S become neighboring subtrees
of S1 or S2 depending upon which side of C they lie on.
The algorithm terminates when all the nodes of T become
singleton sets. Thus T is a weighted tree whose nodes are
the vertices of V . It can be shown that T captures all-pairs
min-cuts.

1.1.1 An alternative implementation
In the above algorithm, an alternative to computing a

minimum s-t cut for some pair s, t ∈ S is to compute a min-
imum Steiner cut for the Steiner set S in the new graph.
Given a subset S ⊆ V , called the Steiner set, the Steiner
edge connectivity is the size of the smallest cut C that splits
S into two non-empty components; such a cut is called a
minimum Steiner cut. Thus a minimum Steiner cut is also a
minimum u-v cut for all those pairs u, v ∈ S that lie on dif-
ferent sides of the cut C. The starting point of our Gomory-
Hu tree construction algorithm is Algorithm 1.1.

2this is basically a contracted Gomory-Hu tree where all
edges with weight more than k are contracted

Algorithm 1.1 A simple algorithm for constructing a
Gomory-Hu tree for the graph G = (V, E)

– Initialize the tree T to a single node, which is the entire
vertex set V .
– Initialize the queue Q to the queue containing only one
element, which is the set V .
while the queue Q is not empty do

– delete the first element of Q; call this element S.
– call the minimum Steiner cut algorithm with the set
S as the Steiner set in the new graph obtained by con-
tracting the entire subtree rooted at each neighbor in
T of S into a single node.
– let S1 and S2 be the two components that S is split
into by the above cut and let c be the size of this cut;
update T by splitting the node S into nodes S1 and S2

and introduce an edge with weight c between S1 and
S2.
– set the neighbors of S1 and S2 in the tree T appro-
priately.
– insert the node S1 (similarly, S2) in the queue Q if S1

(resp., S2) contains more than one vertex.
end while

It is easy to see that Algorithm 1.1 is just an alternative
implementation of the algorithm by Gomory and Hu. The
running time of Algorithm 1.1 is O(n·(time to compute a
min Steiner cut)). We will present in the next section a tree

packing algorithm with running time Õ(mc) to compute a
minimum Steiner cut in an undirected graph G, where c is
the value of this cut. This, however, would only result in an
algorithm with running time Õ(n · (mc)) for constructing a
Gomory-Hu tree.

As a first attempt to get a faster algorithm, let us consider
the following special case. Suppose each minimum Steiner
cut that Algorithm 1.1 computes, splits the the Steiner set
S into two subsets S1, S2 of cardinality |S|/2 each (let us
assume that n is a power of 2). Then the depth of the
computation tree3 is log n. We can show the following claim.

Claim 1. If the computation tree has depth log n, then
the running time of Algorithm 1.1 is Õ(mc), where c =
maxu,v∈V λ(u, v).

We will show how to extend Claim 1 in Section 3. We will
first present our efficient tree packing algorithm for comput-
ing a minimum Steiner cut in Section 2.

2. THE IMPROVED MINIMUM STEINER
CUT ALGORITHM

In this section we first give an overview of Gabow’s al-
gorithm [5] for directionless tree packing to find the global
minimum cut and then review the algorithm by Cole and
Hariharan [3] (henceforth called the CH algorithm) to com-
pute a minimum Steiner cut for a given Steiner set S ⊆ V .
Then we present our improved minimum Steiner cut algo-
rithm.

3Each node of the computation tree corresponds to a mini-
mum Steiner cut subroutine - the two children of the node
corresponding to the subroutine for Steiner set S are the
subroutines for Steiner sets S1 and S2 that S splits into, by
the minimum Steiner cut for S that Algorithm 1.1 computes.

First, the given undirected graph is made directed by ori-
enting the edges in both directions. We will use the following
terms here.

(i) an r-cut is a directed cut where r is on the source side
of the cut.

(ii) a directionless r-spanning tree is a spanning tree of
directed edges rooted at a specified root vertex r such
that r has an in-degree of 0 in the tree.

(iii) con(v) denotes the edge connectivity of v from the root
vertex r.

Gabow’s algorithm is based on following result due to Ed-
monds.

Theorem 3 (Edmond’s relaxed theorem [4]). The
minimum value of an r-cut cmin is exactly equal to the max-
imum number of edge-disjoint directionless r-spanning trees
such that each vertex v 6= r has in-degree cmin over all the
trees.

The directionless r-spanning trees are constructed one at a
time. Given the first i − 1 trees T1, . . . , Ti−1, the ith tree
Ti is constructed in several rounds. Ti is built from a forest
(let us name this forest Ti as well) initially comprising n
singleton vertices. Each distinct tree in this forest is called a
component. Each round in the construction process runs in
O(m+n) time and reduces the number of components in the
ith forest Ti by at least half, leading to a time complexity of
O((m+n) log n) per tree, and O(cmin(m+n) log n) overall.

Any particular round begins with several connected com-
ponents, each of which has exactly one deficient vertex, i.e.,
a vertex whose total in-degree in T1, . . . , Ti is i−1 (all other
vertices have in-degree i in T1, . . . , Ti). Each of these con-
nected components gets processed in this round. Consider
one such component C with a deficient vertex v. Gabow’s
algorithm now computes the minimum set M containing
edges satisfying at least one of the following properties:
(1) e /∈ T1, . . . , Ti and is directed into v.
(2) e ∈ Tj for 1 ≤ j ≤ i and is in the fundamental cycle
formed by adding some edge f ∈ M to Tj .
(3) e /∈ T1, . . . , Ti and is directed into a vertex into which
some other edge in M is also directed.

Computing M needs a closure-like algorithm, and Gabow
shows how to perform this in time proportional to the num-
ber of edges and vertices involved in M . Gabow shows that
this closure like algorithm has one of two possible outcomes:
(i) there exists an edge e ∈ M which connects a vertex in Ti

outside C to a vertex inside C, or (ii) no such edge exists in
M . In Case (i), there exists a sequence of swap adjustments
to T1, . . . , Ti culminating in the addition of e to Ti, which
ensures that v is no longer deficient; further, no new defi-
cient vertices are created in the process and the number of
connected components is reduced by 1. In Case (ii), Gabow
shows that the set S of vertices into which edges of M are di-
rected occur contiguously in T1, . . . , Ti, and (V \S, S) forms
an r-cut of size i− 1.

The Cole-Hariharan Algorithm.
The CH algorithm [3] for minimum Steiner cut is based

on a relaxed extended tree packing theorem from [1]4.

4Actually a slightly stricter version of the theorem appears
in the cited reference.

Theorem 4. Given an Eulerian directed graph G and
any vertex r, there exist k edge disjoint directionless trees
T1, T2, . . . , Tk rooted at r such that each vertex v 6= r in G
appears exactly con(v) times over all the trees and has in-
degree exactly con(v) over these trees, where con(v) is the
edge connectivity of r to v and k = max

v 6=r
{con(v)}.

As in Gabow’s algorithm, the CH algorithm builds direc-
tionless trees one at a time. Any Steiner vertex is chosen
as the root r. Given the first i − 1 trees with the property
that each vertex v occurs in exactly min{con(v), i−1} trees
and has in-degree exactly equal to its number of occurrences
in these trees, the ith tree is constructed in several rounds.
Each round in the algorithm, decreases the number of com-
ponents in the last tree by at least a constant factor. This is
done by finding a series of adjustments to the trees so that
all the properties of the trees (number of occurrences of a
vertex and its in-degree) remain valid but components in
the last tree merge to reduce their total number by at least
a constant factor. However, there are additional complica-
tions here. Gabow’s algorithm can stop the moment it finds
a small r-cut (of size i− 1, say). However the CH algorithm
must continue in this situation; before doing so, it shrinks
this entire r-cut into a black supervertex, adjusts edges in
the trees incident on this black supervertex so the degree of
each occurrence of the black supervertex is at most 2, and
then proceeds further. This leads to a hierarchy of white
vertices and black supervertices as the algorithm proceeds.

White vertices and Black supervertices.
Let us suppose that we have constructed i − 1 trees and

are in the process of constructing the ith tree. Now all
the vertices in the graph, except the root, are arranged in
several layers. At the topmost layer, a vertex is either a
singleton white vertex or is a part of a collection of vertices
called a black supervertex. A black supervertex b is a subset
of vertices not containing the root r such that its in-degree
in the graph is at most j ≤ i − 1 and it has been discov-
ered as a small cut during the construction of the (j + 1)th
tree. All the vertices of b appear contiguously in all the trees
constructed so far and further, from this stage onwards, ver-
tices in b are contiguous in all the trees they appear in. Each
black supervertex b appears exactly con(b) many times over
all the trees, possibly occurring multiple times in a single
tree.

All vertices that do not belong to any black supervertex
are white vertices. They can either be vertices with edge
connectivity of at least i from r, or vertices whose edge con-
nectivity is i− 1 from r but no cut of size i− 1 separating it
from the root r has been discovered yet. All white vertices
which are in the second category will eventually be placed
inside a black supervertex (which will be an edge connectiv-
ity cut separating it from r) by the end of the construction
of the ith tree. White vertices occur i times in the trees,
exactly once per tree, and have an in-degree of either i or
i− 1 depending on whether it is a deficient vertex or not.

Black supervertices internally have a hierarchical struc-
ture. So a black supervertex with in-degree j ≤ i−1 is com-
posed of a nonempty set of singleton vertices which have a
connectivity of j from r and other black supervertices which
have an edge connectivity ≤ j. We overload our nomencla-
ture and call singleton vertices which have an edge connec-
tivity of j from r as white vertices at this particular level of

nesting. The black supervertices, on the other hand, have a
further hierarchy of white vertices and black vertices inter-
nally. The important properties here are:

• if white vertex v appears immediately inside a black
supervertex b, then v appears once immediately inside
each occurrence of b; the total in-degree of v is the
edge connectivity of b.

• if a black supervertex b′ with edge connectivity j′ ap-
pears immediately inside a black supervertex b, then
b′ appears a total of j′ times immediately inside the
various occurrences of b.

• when a set of vertices (and supervertices) is demar-
cated as a new black supervertex, all these vertices are
contiguous in all the trees. Thus, a black supervertex
always remains contiguous is all the trees.

• the following invariant is maintained: a black super-
vertex has a degree of at most 2 in each occurrence.
(As we shall see, this property is actually maintained
only for a special set of black supervertices known as
the maximal black supervertices in the CH algorithm.)

The last property enables the algorithm to view the trees
as trees on white vertices with paths (not necessarily prop-
erly oriented) of black supervertices connecting the white
vertices.

The CH Algorithm for minimum Steiner cut.
Each round in constructing the tree Ti can be split into

the following steps.

1. In each component of Ti where there exist vertices with
edge connectivity i−1 from r, find a white maximal set
of vertices such that it represents an r-cut of size i−1 .
Call such a set of vertices a maximal black supervertex.

2. If a maximal black supervertex contains a Steiner ver-
tex, then terminate the algorithm and output i− 1 as
the Steiner edge connectivity; otherwise, balance the
degrees of all occurrences of maximal black superver-
tices such that no occurrence has degree greater than
2.

3. Run a closure process on each component to find a
releasable or joining path5 joining this component to
some other component.

4. Perform a sequence of transformations to the trees
such that the releasable paths from the last step are
released. These paths are added to the tree Ti to re-
duce the number of components by at least a constant
factor.

The CH algorithm first determines black supervertices
that are white maximal in their components and runs the
closure with such a vertex because of the following reason:
since b is white maximal, there is no other black supervertex
b′ in b’s component such that b ⊂ b′ and there is some white
vertex w ∈ b′ \ b. It is clear that if such a black superver-
tex b can be identified, then the closure process of the CH

5A path begins and ends at white vertices and goes via only
black supervertices; a path is releasable if the trees can be
modified such that the path is freed without violating the
properties of the trees.

algorithm cannot get stuck in an r-cut of size i− 1 and will
eventually find a joining path. This is because the closure
process will start with a seed path containing a white vertex
in b’s component that is outside b and there is no cut of
size i− 1 containing this white vertex along with b which is
limited to b’s component alone.

Cole and Hariharan showed that all the above steps can
be performed in Õ(m) time for each round, except the first

step, which takes Õ(m+i2n) time. We use Steps 2-4 of their
algorithm and give an implementation of Step 1 with a run-
ning time of Õ(m) to achieve an overall complexity of Õ(mk)
for constructing the k trees, where k = minu,v∈S λ(u, v). Let
us first review Steps 2-4 of the CH algorithm.

Step 2: Balancing the degree of black supervertices.
This step is also called the global degree balancing step. For

each maximal black supervertex b discovered in this round,
we need to make the degree of each occurrence of b in the
trees T1, . . . , Ti to be at most 2.

The idea here is the following: let the black supervertex b
occur with degree d > 2 in tree Tj . Since b has a total degree
of 2(i− 1) in the graph, there must exist at least d− 2 leaf
occurrences of b in the trees T1, . . . , Ti−1. Let b′ be one such
leaf occurrence. The path from b′ to its nearest white vertex
w is traversed and cut at w; then the path b′-w is attached
to the instance of w in Tj and finally for a neighbor x of b,
the edge x-b is replaced by x-b′, where x is chosen so that
w is not in the subtree rooted at x (treating b as a root).
This step can be performed efficiently for all the maximal
black supervertices discovered in this round, by traversing
each tree T1, . . . , Ti−1 in a bottom-up manner. This finishes
the degree balancing step in T1, ..., Ti−1.

Balancing the degree in Ti is done separately, since we use
this step to generate a seed path which will be used to start
the closure process in Step 3. We go through all the com-
ponents of Ti that contain an (i− 1)-sized cut (or maximal
black supervertex) discovered in the previous step, in a se-
quential order and process them. This process could change
a component and its vertices could merge with other compo-
nents in Ti. So when we process a component C, we refer to
the dynamic C which includes all the new vertices that have
merged with C due to processing the earlier components in
our order. We describe below how to process a component
C with a maximal black supervertex b.

A special case is when the black supervertex b is an entire
component C. Then we do not need to do anything since
there is no white vertex left in C and so none of the vertices
in C shall occur in the final version of the tree Ti; we just
discard C in this case. So let us assume that the degree of b
is d ≥ 1. Since the total degree of b in T1, . . . , Ti is 2(i− 1),
it is easy to see that there are d leaf occurrences of b in the
trees T1, . . . , Ti−1.

• if d = 1, then there is a leaf occurrence of b in some tree
Tj , 1 ≤ j ≤ i − 1. Form the path x-b-y by detaching
the x-b path from C (where x is the nearest white
vertex to the occurrence of b in Ti) and detaching the
y-b path from Tj (where y is the nearest white vertex
to the occurrence of b in Tj) and joining x-b with b-y.
This x-b-y path is used as a seed path for Step 3.

• for a general d ≥ 2 we do the following: let T`1 , . . . , T`d

be the d trees in T1, . . . , Ti−1 where b occurs as a leaf.
Detach the d paths b-x` from these d leaf occurrences

of b, where x` is the nearest white vertex to b in the
tree T`. Attach these b-x` paths to b in C, creating an
occurrence of b with degree 2d. There are two cases
here:

– None of the vertices x` belongs to C. In this case, the
component C is fragmented into subtrees rooted at the
d children of b, and each of these subtrees uses the edge
linking it to b to pair itself to one of the vertices x`,
which belongs to another component. Thus we create
d occurrences of b with degree 2 and the component
C is no longer present in Ti. So there is no seed path
generated for the component C here and the number
of components in Ti decreases by 1.

– The other case is that there is at least one x` which
belongs to C. Then we can pair 2d− 2 of the 2d edges
incident to b so that this pairing creates d − 1 new
occurrences of b with degree 2 and leaves two edges
b-x` and say, b-y unused, and the number of connected
components in Ti does not decrease (though some of
the subtrees rooted at children of b in C might now
be linked through b to other components). We use the
two paths b-x` and b-y (as was done in the previous
case of d = 1) to form the seed path x`-b-y for Step 3.

Step 3: The Closure Process.
The closure process aims to find an augmenting path for

each component in a round. Each closure process starts
with the seed path generated in Step 2. This seed path is
added to the closure set C. The trees are scanned in a round-
robin fashion and each new path p added to C from tree Tj

is applied to the next tree Tj+1. The paths that form a
fundamental cycle in Tj+1 due to the addition of p are now
added to the closure set C.

The main difference in the closure process here and the
closure process in Gabow’s algorithm is the following: in ad-
dition to the white-to-white paths, one also adds some black-
to-white paths. In particular, if w1-w2 is a white-to-white
path to be added to C where w1 is closer to the closure set,
then we also add the paths from all the intermediate black
vertices to w1. Clearly, all paths in C have at least one white
vertex as a terminal vertex. The other terminal vertex could
be white or black. (If black, it is a supervertex). Addition-
ally, there can be one or more black vertices on the path,
though no white vertex can be present internal to the path.

The set of paths added to C from tree Tj is applied to
tree Tj+1 in an order such that one of the terminal white
vertices (if there is only one terminal vertex, then that vertex
itself) is always in the closure. In case the terminal black
supervertex of some path is not present in tree Tj+1, then we
reserve the path for applying to the next tree which contains
the black supervertex. If a tree contains multiple copies of
a black supervertex which is also a terminal of a path, then
the path produces multiple fundamental cycles - all paths on
these cycles are included in C. Also if a path directed into
a white vertex v is included in C, then all the unused paths
directed into v are also included in C. If the other terminal
(other than v) of such a path is a black supervertex b, then
we detach a leaf occurrence of b along with the path to
its nearest white vertex w (say from tree Tj) and consider
the path w-b-v formed by attaching the path w-b to the
path b-v as a single unused white-to-white path. Now, all
unused white-to-white paths directed into v (and all their

corresponding black-to-white sub-paths moving inside out
from the closure) are also included in C. This entire process
is known as cyclic scanning. The cyclic scanning procedure
is terminated when a path which connects two components
enters C.

Step 4: Modifying the trees and releasing edges.
In this step, we find a sequence of adjustments to be made

to the trees T1, . . . , Ti (without affecting their properties) so
that the joining edges, determined in the last step, are re-
leased. These edges are added to the last forest Ti to reduce
its number of components. This procedure is performed si-
multaneously for all the components in Ti and the number
of components in Ti reduces by at least a constant factor.

Note that the closure process does not provide an ex-
plicit sequence of what rule to apply in order to release
a releasable edge. Instead, it provides a whole computa-
tion tree of all several possible sequences from which the
desired sequence of rules can be extracted. There is one
complication though. The computation tree is constructed
on the static trees T1, . . . , Ti, i.e., no operations/changes on
the trees are actually performed, rather they are simulated
through appropriate data structures. But clearly the trees
change as operations in the sequence are actually applied,
and one could potentially get, for instance, a situation in
which edge e appears in the fundamental cycle of f in the
static trees but does not do so after previous operations have
been applied. This problem is handled by showing that all
changes made to edges before applying a particular opera-
tion are contained within certain contiguous sets C` of white
vertices defined just prior to the operation and the portions
outside are unaffected.

There are further problems that arise as a result of adding
black-to-white paths to our closure. First, edges which have
one endpoint outside and one endpoint inside the C`’s could
be rewired in the process so that their portions outside the
C`’s stay the same (by an edge portion, we mean the se-
quence of black internal vertices and one white endpoint)
but the portion inside may change while remaining inside
the C`’s. Formally, we could work with substitutes of edges,
which differ from the original edges only in the portion in-
side C`’s and every operation goes through because the crux
of the operation will be outside the C`’s, all changes made
so far will be inside, and the portions scanned to make the
current change will enter C` immediately. Second, we need
to determine which of w1 or w2 is closer to the closure set
when a black to white path is applied with the black lying on
the w1, w2 tree edge. This nearness problem can be solved
easily on the static trees T1, . . . , Ti, but closure processes
running on different components could conspire to make the
actual dynamic answer different from the static one. How-
ever, it can be shown that such a swap will be the very last
operation in its closure process, because it provides a joining
edge and such a joining edge can be determined efficiently.

2.1 A faster algorithm for finding black su-
pervertices

The CH algorithm uses a separate subroutine to initially
demarcate all the maximal black supervertices. This sub-
routine does away with the possibility of the closure pro-
cess getting stuck midway because of discovering an r-cut of
size i − 1. However the CH process is expensive and takes
Õ(m + i2n) time; we show a faster Õ(m) procedure.

Lemma 1. If the closure process ends unsuccessfully (with-
out finding the swap sequence) for a component during con-
struction of ith tree, then the vertices spanned by the edges
in the closure form an i − 1 cut in the graph. This cut is
a minimal r-u cut for any white vertex u present inside the
closure where r is the root of the tree.

The new idea here is that we balance the degrees of all
occurrences of (i − 1)-sized cuts as and when we find them
and the closure process treats it as a black supervertex and
continues, till we discover that we have an (i− 1)-sized cut
that is white maximal in its component.

Our overall scheme is the following: as in the CH algo-
rithm, we build directionless spanning trees one at a time,
maintaining the in-degree requirement and the number of
occurrences of each vertex in the trees. Given the first i− 1
trees, we construct the ith tree Ti in several rounds, where
each round decreases the number of components in Ti by
at least a constant factor. Each round processes each com-
ponent in Ti by running the closure process starting with
an unused path incident on the deficient vertex of the com-
ponent. (The initialization is similar to Gabow’s algorithm
for finding the size of a minimum cut in a graph.) Dur-
ing this process, suppose we find a small cut (precisely, an
(i− 1)-sized cut which we call a black supervertex b).

• Local Degree Balancing: We degree balance all
occurrences of b in the trees T1, . . . , Ti. During the
process of local degree balancing, we could realize that
b is actually a maximal black supervertex. Then we
stop our local degree balancing step and go to the step
“Discovered a maximal black”. Otherwise (either b is
not maximal or it is maximal but we have not yet
realized it), we go to the closure step.

• Closure: The closure process is mostly similar to
Step 3 of the CH algorithm and it builds the closure set
of vertices, that is contiguous in all the trees T1, . . . , Ti,
and contains b. If in this process, we find a vertex (ei-
ther black or white) that is external to b’s component
entering the closure set, then we realize that b is a
maximal black supervertex and stop the closure and
go to the next step. Otherwise, we will discover an
(i− 1)-sized cut that contains b. Call this larger cut b
now and go back to the local degree balancing step.

• Discovered a maximal black: If we had discovered
that b is a maximal black supervertex while running
the local degree balancing step, then we come to this
step to run the global degree balancing step (Step 2
of the CH algorithm). If we had discovered that b is
a maximal black supervertex during the closure step,
then all occurrences of b in the trees T1, . . . , Ti already
have their degrees balanced, so we have a seed path
(due to 2 leaf occurrences of b in T1, . . . , Ti) and are
ready to run Steps 3 and 4 of the CH algorithm.

• Steps 3 and 4 of the CH algorithm: Now we are
in the same stage as the end of Step 2 of CH algo-
rithm - maximal black supervertices in components of
Ti that have (i−1)-sized cuts have been identified and
we have balanced their degrees in T1, . . . , Ti. We run
Steps 3 and 4 of the CH algorithm now and decrease
the number of components in the last tree, by a con-
stant factor.

Remark. Note that the difference between the local and
global degree balancing steps is that the work done for lo-
cal degree balancing a black supervertex b is limited to b’s
component itself, and therefore the the work done for differ-
ent components does not overlap. However, this is not true
when we try to balance the degrees of all occurrences of the
maximal black supervertices, and hence we need a global
procedure for degree balancing such vertices.

Now we elaborate on our steps.

Local Degree Balancing.
We run this step when we encounter a black supervertex b

while performing the closure in a component C. If each oc-
currence of b has a degree of at most 2 in the trees T1, . . . , Ti,
then we do not need to do anything. However, if there is
some occurrence of b with degree d > 2 (say in tree Tj), there
must be at least d− 2 leaf occurrences of b in the trees. Let
w1, . . . , wd−2 be the white vertices closest to these occur-
rences of b. We claim that any black supervertex b′ ⊃ b,
contained entirely in b’s component and containing at least
one white vertex, must also contain each of w1, . . . , wd−2.
To prove this claim, we need Lemma 2.

Lemma 2. Consider any set of directionless spanning trees
T1, . . . , Ti (Ti is a forest). Let these trees satisfy the degree
restriction that each vertex v in some black supervertex (ex-
cept the root r) has exactly con(v) occurrences and also has
total in-degree of con(v) in these trees, while all white ver-
tices have exactly i occurrences and have an in-degree of
either i or i−1. (A white vertex having an in-degree of i−1
is said to be deficient.) We claim that any set of vertices not
containing r, containing at most one deficient white vertex
and containing at least one white vertex, which forms an
r-cut of size i − 1 in the graph (call this set X) must be
contiguous in all the trees.

Proof. The first observation is that there is at least one
component of X in each tree, since this set contains a white
vertex. Thus X has at least i components. Now, if X is
not contiguous in at least one tree, then it has at least i + 1
components. Let W be the set of white vertices in X and let
|W | = w. Then, the total number of edges in the trees which
are completely internal to X (both terminal vertices in X) is
at most I(X) = (w · i+∑

v∈X\W con(v))−(i+1), since each

v ∈ W occurs exactly i times while each v ∈ X \W occurs
exactly con(v) times. Due to the in-degree restrictions, the
total number of edges directed into vertices in X is at least
T (X) = (w − 1) · i + (i − 1) +

∑
v∈X\W con(v). Thus the

number of external edges directed into vertices in X is at
least T (X)− I(X) = i. This contradicts the fact that X is
an r-cut of size i− 1 in the graph.

Now, we can see that any black supervertex b′ ⊇ b, con-
tained entirely in b’s component and containing at least one
white vertex, must also contain w`, where w` is the nearest
white vertex to a leaf occurrence of b in some tree T`. This
follows directly from the fact that if w` /∈ b′, then b′ is non-
contiguous in T` and this immediately violates Lemma 2.

So if there is some w` ∈ {w1, . . . , wd−2} missing in b’s
component, then we know that b is a maximal black super-
vertex in its component and so we do not perform any local
degree balancing. On the other hand, if each w` is in b’s
component, then we start walking up the tree Tj from w`

for each ` and simultaneously start walking up from b. Dur-
ing any of these walks, if we encounter a vertex outside the

current component, then we stop that walk. We can have
the following situations for any particular w`.

1. The walk from w` hits some vertex in b. Then we have
found the b-w` path in tree Tj . We associate w` with
the last edge on the walk. (This is an edge incident on
b in Tj .)

2. The walk from b hits w`. Again, we have found the
b-w` path in tree Tj and we associate w` with the first
edge on the walk. (This is again an edge incident on b
in Tj .)

3. Both walks hits a common vertex. Again, we have
found the b-w` path in tree Tj and we associate w`

with the first edge on the walk from b. (This is again
an edge incident on b in Tj .)

4. Walks from b and w` terminate on vertices in other
components before any of the above conditions is met.
Then b is a maximal supervertex and we terminate this
step immediately and go to the “Discovered a maximal
black” step.

In these walks, to ensure that we spend time proportional
to the size of the component in a round, we do not retrace
any edge; all edges traced already are marked. In our walk
up from b and each of the w`’s, we must have found paths
between b and w` in tree Tj ; otherwise, we would not per-
form local degree balancing. Now, let e be a path of black
supervertices which is incident on b but is not on this path
between b and some w`. We can detach the subtree sub-
tended at e and connect it to w` through b in Tj . For this
purpose, we need to stitch the paths b-w` (from the leaf oc-
currence of b) and e to form a single path of black vertices.
Clearly, the degree of b in the occurrence in Tj will be de-
creased by 1. We perform this readjustment for the d − 2
edges incident on b in Tj ; this can be done in time linear in
the number of edges traversed.

Closure.
The closure step performed here is mostly the same as

the cyclic scanning process (Step 3 of CH algorithm) used
to find maximal black supervertices. There is however one
difference, which is due to the fact that unlike the closure
step in CH algorithm, here the trees get modified due to
local degree balancing. We present below how the traversals
on the trees are done differently. Except for this, the other
parts of the cyclic scanning process of the CH algorithm are
implemented in exactly the same manner.

• When an edge (x, y) is used in tree Tj , where x is inside
the closure set C and y is outside it, the path between
y and Tj ∩ C gets added to C. The classical technique
to obtain this path is to maintain depths of vertices in
the trees and ensure that one always starts traversing
up the tree from the deeper vertex. However, this is
not possible here since the depths keep changing due
to local degree balancing operations.

• Instead we do the following: if rc is the root of the
closure set in Tj , then we traverse the paths both from
rc and from y to the root of the trees r, one edge
at a time on each path. During these traversals, if we
encounter on only one of these paths a vertex that does
not belong to b’s component, then we still continue our

traversals on both paths one edge at a time, since we
are assured that at least half the edges traversed (the
edges on the path from y to Tj ∩ C) get added to the
closure.

• These traversals stop when either the traversal from
the lower vertex (either rc or y) in Tj hits the higher
vertex or both the paths encounter vertices that are
outside b’s component, in which case b is maximal and
we terminate the closure step and go to the “Discov-
ered a maximal black” step.

Thus our closure process could terminate in one of two
ways: (i) either we discover a larger (i− 1)-sized cut b′ ⊃ b
in b’s component or (ii) we discover that b is a maximal black
supervertex in its component.

– In Case (i), we go to the “Local Degree Balancing” step
in order to degree balance all occurrences of b′ in T1, . . . , Ti.

– Case (ii) occurs when we realize the closure set of ver-
tices that we are computing is forced to include an “external
vertex” v, that is, one that does not belong to b’s component
in Ti (if we do not include v, then the contiguity property of
(i−1)-sized cuts, refer Lemma 2, would get violated). Since
we are constructing a minimal set of vertices in the closure
that contains b and is a candidate for the smallest (i − 1)-
sized cut that contains b, the fact that an external vertex is
forced to belong to this set implies that b is maximal in its
component (refer Lemma 3 below). Hence in this case we
go to the next step: “Discovered a maximal black”.

Lemma 3. If an external vertex enters our closure set,
then the current largest black supervertex b is maximal.

Discovered a maximal black.
We come to this step either when we do local degree bal-

ancing for a black supervertex b and discover that b is a
maximal black supervertex or we discover in the closure step
that b is a maximal black supervertex. In the former case,
we need to do global degree balancing (Step 2 of the CH
algorithm) followed by Steps 3 and 4 of the CH algorithm,
whereas in the latter case, all occurrences of b in T1, . . . , Ti

already have their degrees balanced due to the local degree
balancing step on b. But before we go to Step 3 of the CH
algorithm, we will first recompute the depths of all the ver-
tices in T1, . . . , Ti, and then run Steps 3 and 4 of the CH
algorithm. These steps ensure that the number of compo-
nents in Ti reduces by at least a constant factor.

Time Complexity of the Algorithm.
We need to show that the modified algorithm has a time

complexity of Õ(m) in each round. We need to show this
bound for the new steps in order to determine a maximal
black supervertex; all the other steps are exactly the same
as in the CH algorithm and have a time complexity of Õ(m)
per round according to their analysis [3]. The new pro-
cess for finding maximal black supervertices involves: (1) a
slightly modified cyclic scanning routine in our closure step
and (2) local degree balancing of black supervertices.

At any stage, when we identify a black supervertex b,
we contract the entire supervertex into a single node. This
guarantees that we do not run the risk of traversing edges
internal to the black supervertex in the future. Now, we
make the following simple claims:

(i) all edges traversed during a closure step resulting in a
black supervertex b are internal to b; this ensures that
the total time spent in the closure step in a round is
O(m),

(ii) all the edges traversed in order to ascertain whether
a black supervertex b is maximal are contained in the
black supervertex of the next higher level of nesting,
provided b is not maximal,6 and

(iii) if b is maximal, then at least half the edges traversed
both in the closure step and in ascertaining whether b
is maximal are contained in b’s component.

Thus, the total time complexity of our maximal black super-
vertex finding process is Õ(m). Since O(log n) rounds are
required to construct each tree, the total time complexity of
finding a minimum Steiner cut of size k is Õ(mk). We have
thus shown the following theorem.

Theorem 5. Given an undirected graph G and a subset
S of its vertices, the edge connectivity k of the vertices in S
can be determined in time Õ(mk).

3. A FAST CUT TREE ALGORITHM
In this section we present our fast algorithm for comput-

ing a Gomory-Hu tree. The important properties of our
Steiner edge connectivity algorithm, which will be used by
our Gomory-Hu tree construction algorithm, are the follow-
ing:

• A collection of vertices B becomes a black supervertex
while constructing the ith tree if the edge connectivity
of r to B is i−1 i.e., for all white vertices immediately
inside B, edge connectivity from r is i−1 and B is the
minimal Steiner cut of cardinality of i − 1 for all the
white vertices immediately inside B. From this stage
onwards, vertices in B are contiguous in all trees they
appear in.

• The algorithm terminates when a black supervertex
containing a Steiner vertex is produced. Let us denote
this supervertex by BS . It is easy to see that (BS , V \
BS) forms a minimum Steiner cut for Steiner set S
and BS is the side of this cut not containing the root
r. Further, all the vertices of BS appear contiguously
in all trees at the termination of the algorithm, and if
one continues to construct more trees, these vertices
shall always remain contiguous. This means that in
further stages of the algorithm, BS can be thought of
as a single vertex.

• Another property is that BS is a minimal Steiner min-
cut, which means that no proper subset of BS can be
a Steiner min-cut.

These properties lead to the idea of reusing the work done
by our minimum Steiner cut algorithm for a Steiner set S
for one of the sets S1 or S2 that S gets split into. Each
node of our computation tree Λ will consist of a call to the
minimum Steiner cut algorithm with a particular Steiner
set. The subproblem corresponding to the root of Λ will be

6This follows from the fact that each of the wi’s (nearest
white vertices to leaf occurrences of b) along with b are part
of the black supervertex at the next higher level of nesting.

the computation of a minimum Steiner cut (A, V \ A) for
the Steiner set V . Our minimum Steiner cut algorithm will
compute this cut by picking some vertex r in V as the root
and building k trees rooted at r, where k is the size of this
cut; let the vertex r ∈ A. The subproblem associated with
one of the two children of the root of Λ will be the minimum
Steiner cut computation for the Steiner set A in the graph
G1 that is obtained by contracting all the vertices in V \ A
into a single node s0.

The crucial idea now (which was also used in [10]) is the
following: in order to compute this cut (X, Y) where the
vertices in A ∪ {s0} are partitioned into X and Y , we do
not have to start from scratch but continue from where we
stopped after building the k trees which determined the cut
(A, V \A). In these k trees, all the vertices in V \A appeared
contiguously - so contracting them and regarding them as
one node comes for free. So the first k trees which were
built, can be regarded as a part of the process of computing
the minimum Steiner cut for the Steiner set A in the graph
G1. More generally, at any stage of our algorithm, when we
compute the minimum Steiner cut for a Steiner set S, this
set S corresponds to a node in the partial Gomory-Hu tree
and the subtrees rooted at each neighbor of this node in the
partial Gomory-Hu tree are contracted to single nodes. We
compute the minimum Steiner cut for the Steiner set S in
this graph. And most importantly, this minimum Steiner
cut need not be computed from scratch and the trees used
at its parent in the computation tree can be reused if the
root node of those trees belongs to S.

In order to reuse trees, Algorithm 3.1 uses a queue Q
which stores along with each Steiner set for which the min-
imum Steiner cut algorithm has to be called, the number of
trees already constructed and the trees themselves. This will
allow us to reuse trees constructed earlier at a node in the
computation tree for one of its child subproblems. For any
subproblem extracted from the queue, if no tree has already
been constructed for this subproblem, then the algorithm
chooses a root uniformly at random from the Steiner set.
The algorithm then proceeds to compute trees using our
minimum Steiner cut algorithm and stops when a black su-
pervertex containing some Steiner vertex is found. This in-
dicates a minimum Steiner cut and the Gomory-Hu tree T is
modified accordingly and two new subproblems are spawned
on S1 and S2, with trees constructed at this stage preserved
for reuse in the subproblem for S2 since r ∈ S2 (because
S1 ⊆ Bj and r /∈ Bj).

Analysis.
Let us view Algorithm 3.1 in terms of its computation

tree. Each node of the computation tree involves a minimum
Steiner cut computation in some contracted graph G′. The
cost of this minimum Steiner cut computation is Õ(m′c′),
where m′ is the number of edges in G′ and c′ is the value of
the minimum Steiner cut. Since c′ ≤ c = maxu,v∈V λ(u, v),

this cost is also Õ(m′c). By bounding the running time

of this subproblem by Õ(m′c), the child subproblem where
the trees constructed for the parent can be reused comes
completely for free, since the number of edges in the child
subproblem is at most m′ and the size of the cut is at most
c = maxu,v∈V λ(u, v). When we invoke a minimum Steiner

cut computation in G′, we charge a cost of Õ(c) to each edge

of the graph G′ so that we accumulate a cost of Õ(m′c) to

Algorithm 3.1 Our algorithm for constructing a Gomory-
Hu tree for the graph G = (V, E)

– Initialize the tree T to a single node containing the
entire vertex set V .
– Initialize the queue Q to the queue containing the single
element (V, 0, ∅).
{The format of a tuple in the queue is (Steiner set, number
of trees already constructed, these trees).}
while the queue Q is not empty do

– flag := TRUE
– delete the first element (S, i, {T1, . . . , Ti}) from Q.
– if i = 0 then pick a vertex in S uniformly at random
as the root r.
while flag = TRUE do

– construct tree Ti+1 rooted at r.
– find black supervertices.
if ∃ some black supervertex Bj such that Bj ∩S 6= ∅
then

– S1 := Bj ∩ S;
– S2 := S \ S1;
– Split node S into S1 and S2 and connect them
by an edge of weight i in T .
– Set the neighbors of S1 and S2 in T appropriately.
– if |S1| > 1 then insert (S1, 0, ∅) in the queue Q.
– if |S2| > 1 then insert (S2, i, {T1, . . . , Ti}) in the
queue Q.
{The trees used for S are being reused for S2 since
the root r of these trees is in S2.}
– flag := FALSE

else
– i := i + 1

end if
end while

end while

pay for this minimum Steiner cut computation.
Note that the edges crossing the Steiner cut of a subprob-

lem associated with a node x in the computation tree are
repeated in the subproblems associated with both the chil-
dren of x, while an edge not crossing the cut is a part of only
one of these two child subproblems. If an edge is repeated,
we say that the original edge is a part of the left child sub-
problem and a new edge has been added to the right child
subproblem in the computation tree. Lemma 4 shows that
at most 2m new edges are spawned during the course of the
algorithm, and therefore there are at most 3m edges overall
in play.

Lemma 4. The total number of new edges created dur-
ing the course of the algorithm due to repetition of edges in
siblings is at most 2m.

Proof. All the new edges correspond to edges in a Steiner
cut at a particular stage of the algorithm. So the total num-
ber of new edges spawned is c1 + c2 + · · · + cn−1, where
c1, . . . , cn−1 are the values of the n − 1 minimum Steiner
cuts. These values c1, . . . , cn−1 are the weights of the n− 1
edges of the Gomory-Hu tree T . Now we will show that
the sum of weights of all edges of T is at most 2m. Root
the Gomory-Hu tree T = (V, E) at an arbitrary vertex and
define the function l : E→ V such that l(e) is the deeper
of the two Steiner vertices of e in T . It is easy to see
that T is an one-to-one mapping. For any edge e ∈ E , we

have w(e) ≤ deg(l(e)) (deg() refers to degree in the graph
not in the Gomory-Hu tree). Summing over all the edges
in E and noting that the function l is one-to-one, we have∑

e∈E w(e) ≤ ∑
v∈V deg(v) = 2m.

Lemma 5. The expected total cost due to an edge in the
algorithm is Õ(c).

Proof. Consider an intermediate step in the algorithm
where a subproblem C containing s Steiner vertices is split
by the minimum Steiner cut into two subproblems C1 and
C2, containing s1 and s2 Steiner vertices respectively, where
s1 + s2 = s. For any edge e which is present in either C1

or C2, let Xe be a random variable denoting the cost due
to the edge e in C1 or C2. An edge e in C1 pays a cost of
c log n if the root rc of the spanning trees constructed for C
is in C2, else (the root rc is present in C1) e pays nothing
since C1 would inherit the trees built for C. Since the root
of the spanning trees is chosen uniformly at random at any
stage of the algorithm, the probability that rc ∈ C2 is s2/s
and the probability that rc ∈ C1 is s1/s. Thus the expected

cost of e in C1 is (s2/s)Õ(c). Similarly, if e is an edge in C2,

then its expected cost is (s1/s)Õ(c). Thus

E[Xe] =

{
(s2/s)Õ(c) if e ∈ C1

(s1/s)Õ(c) if e ∈ C2

However, we need to consider a subtle point here. The
equation above is valid if our algorithm always picks the
same minimum Steiner cut to split C on, irrespective of
the choice of root at C. However, note that our algorithm
does not return a single Steiner min-cut, but all the minimal
Steiner min-cuts where the side not containing the root is
minimal. So our algorithm needs to decide which Steiner
min-cut to split C on. We are always interested in retain-
ing as many Steiner vertices as possible in the part of the
Steiner cut which contains the root since we shall get the cor-
responding subproblem for free in the next iteration. So the
algorithm always splits C along that particular cut (among
the minimal Steiner min-cuts) which retains the maximum
number of Steiner vertices on the side of the root.

Using linearity of expectation, the expected total cost of
an edge is the sum of its expected costs at each computation
it is part of. Let the edge e trace a path along the compu-
tation tree corresponding to the Steiner sets S1, S2, . . . , Sk,
where Sk ⊂ Sk−1 ⊂ . . . ⊂ S1 ⊆ V and k ≤ n. We need
to consider two situations. If the edge was present in the
original graph, then S1 = V and the expected cost due to
the edge at the different subproblems it is part of is at most
(1+(s1−s2)/s1 +(s2−s3)/s2 + . . .+(sk−1−sk)/sk−1)Õ(c);
on the other hand, if the edge was created by a subprob-
lem due to repetition of the Steiner cut edges in both its
children, then S1 ⊂ V and the expected cost due to this
edge at the different sub-problems it is part of is at most
(s0 − s1)/s0 + (s1 − s2)/s1 + . . . + (sk−1 − sk)/sk−1)c log n,
where s0 is the cardinality of the Steiner set in the parent
of S1 in the computation tree. If n0, n1, n2, . . . are positive
integers, where n0 > n1 > n2 > . . ., then

n0 − n1

n0
+

n1 − n2

n1
+

n2 − n3

n2
+ . . .

nk−1 − nk

nk−1
≤

1

n0
+

1

n0 − 1
+ . . . +

1

n1 + 1
+

1

n1
+

1

n1 − 1
+ . . . +

1

nk + 1

where we are upper bounding the term (ni−ni+1)/ni on the
left hand side by the sum 1/ni+1/(ni−1)+. . .+1/(ni+1+1).

The right hand side is at most Hn0 , the n0th Harmonic
number, which is ln(n0) + Θ(1). Thus it follows from the
above inequality that the total cost due to an edge is at most
(ln n + Θ(1))Õ(c), which is Õ(c).

Since we split the cost of the algorithm among its edges
and since there are at most 3m edges by Lemma 4, we have
shown Theorem 6.

Theorem 6. A Gomory-Hu tree in an unweighted graph
G = (V, E) with m edges and n vertices can be computed in

expected time Õ(mc), where c = maxu,v∈V λ(u, v).

We can actually show a stronger result that the running
time of our algorithm is Õ(mc) with high probablity. The
computation tree Λ essentially consists of various subprob-
lems, where any contiguous left-going path is a single sub-
problem which takes time Õ(mic), where mi is the num-
ber of edges in this subproblem. Let us split Λ into lay-
ers. Layer(j) consists of all those nodes/subproblems whose
path from the root of Λ has exactly j right turns. The
time taken for all the subproblems in any single layer is
Õ(

∑
i mic), where

∑
i mi is the total number of edges in-

volved in all the subproblems associated with this layer. It
follows from Lemma 4 that

∑
i mi in any one layer is at most

3m, thus it takes Õ(mc) time per layer. We can show that
with probability 1− 1/n, the number of layers is O(log n).

Conclusion and Future work.
We presented the first Gomory-Hu tree algorithm which

runs in expected time Õ(mn). Derandomization, extension
to the capacitated case, and improvement in speed are in-
teresting open problems.

Acknowledgments. We would like to thank the reviewers
for pointing out the correct references to us.

4. REFERENCES
[1] J. Bang-Jensen, A. Frank, and B. Jackson, Preserving and

increasing local edge connectivity in mixed graphs, SIAM J.
Discrete Mathematics 8(2), pp. 155-178, 1995.

[2] András A. Benczúr, Counterexamples for Directed and Node
Capacitated Cut-Trees, SIAM J. Computing 24 (3),
pp. 505-510, 1995.

[3] R. Cole and R. Hariharan, A Fast Algorithm for Computing
Steiner Edge Connectivity, Proc. of the 35th Annual ACM
Symposium on Theory of Computing, San Diego, pp. 167-176,
2003.

[4] J. Edmonds, Submodular functions, matroids, and certain
polyhedra Calgary International Conference on Combinatorial
Structures and their Application, Gordon and Breach, New
York, 1969, pp. 69–87.

[5] Harold N. Gabow, A matroid approach to finding edge
connectivity and packing arborescences, J. Comput. System
Sci. 50, pp. 259-273, 1995.

[6] A. V. Goldberg and S. Rao, Beyond the Flow Decomposition
Barrier, JACM 45(5), pp. 783-797, 1998.

[7] A. V. Goldberg and K. Tsioutsiouliklis, Cut Tree Algorithms:
An Experimental Study, J. Algorithms 38(1), pp. 51-83, 2001.

[8] R. E. Gomory and T. C. Hu, Multi-terminal network flows, J.
Soc. Indust. Appl. Math. 9(4), pp. 551-570, 1961.

[9] D. Gusfield, Very Simple Methods for All Pairs Network
Flow Analysis, SIAM J. Computing 19(1), pp. 143-155, 1990.

[10] R. Hariharan, T. Kavitha, and D. Panigrahi, Efficient
Algorithms for Computing All Low s-t Edge Connectivities
and Related Problems, Proc. of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 127-136, 2007.

[11] D. Karger and M. Levine, Finding Maximum Flows in
Undirected graphs seems easier than Maximum Matching,
Proc. of the 30th Annual ACM Symposium on Theory of
Computing, pp. 69-78, 1997.

