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Abstract: It is known that, given an edge-weighted graph, a maximum adjacency
ordering (MA ordering) of vertices can find a special pair of vertices, called a pendent
pair, and that a minimum cut in a graph can be found by repeatedly contracting a
pendent pair, yielding one of the fastest and simplest minimum cut algorithms. In
this paper, we provide another ordering of vertices, called a minimum degree ordering
(MD ordering) as a new fundamental tool to analyze the structure of graphs. We
prove that an MD ordering finds a different type of special pair of vertices, called a
flat pair, which actually can be obtained as the last two vertices after removing a
vertex with the minimum degree repeatedly. By contracting flat pairs, we can find
not only a minimum cut but also all extreme subsets of a given graph. These results
can be extended to the problem of finding extreme subsets in symmetric submodular
set functions.

1 Introduction

Let ® and R denote the sets of reals and nonnegative reals, respectively. Let V' be a finite set,
where we denote n = |V|. A singleton set {v} is called ¢rivial and may be written as v. Let
(G = (V,E),w) be a graph with vertex set V, edge set E' and weight function w : E — R,.
The cut function of (G, w) is defined by set function d ¢ ) : 2V s R+ such that diGuw)(X) =
Y{w(e) |e € E, eNX # 0 # e~ X}. For two specified vertices u and v, let A ) (u,v) denote
the local-edge-connectivity min{d(g ,)(X) [u € X CV —v}.

Analyzing the connectivity structure of a given graph is an important research issue, and
several compact representations of connectivity structure of graphs such as Gomory-Hu trees [6],
cactus representations [3] and extreme subsets [20] have been discovered. These representations
have numerous applications to design of efficient graphs algorithms (see [9]).

Computing a minimum cut X, i.e., a nonempty subset X C V' that minimizes dq,,), is one
of the basic problems in the issue, and has been studied extensively (see [2]). In particular,
for undirected graphs, several algorithms that compute a minimum cut without relying on a
maximum flow algorithm are known so far. One of such algorithms is based on a structural
feature of graphs. A pair of vertices u and v is called a pendent pair if it satisfies

d(G,w)(X) > min{d(G’w) (u),d(G,w)(U)} for all X CV with | X N{u,v}| =1. (1)

e, Ngw)(u,v) = min{dgu)(u),dGw)(v)}. The existence of pendent pairs is implied by
Gomory-Hu trees that represent the structure of all local-edge-connectivities [6]. An edge-
weighted spanning tree (T' = (V, F),w') is called a Gomory-Hu tree of (G, w) if (i) (1w (z,y) =
A(G,w)(7,y) holds for all z,y € V and (ii) for each edge e = {u,v} € F, the two components
Ty = (Wi, F1) and T = (Va, F2) in (V. F — e) satisfy d(q.)(V1) = diguw)(V2) = MG w)(u,v).
For example, Figure 1(b) shows a Gomory-Hu tree for the graph G = (V, F) in Fig. 1(a). By
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Figure 1: (a) An edge-weighted graph (G = (V,F),w) and (b) A Gomory-Hu tree (T' =
(V,F),w'") of the graph (G, w), where the numbers beside edges indicate their weights.

definition of Gomory-Hu trees, every leaf vertex u and its unique neighbour v in (T, w') give a
pendent pair. In the graph (G, w) in Figure 1(a), {us,v1} and {ug, us} are pendent pairs.
Interestingly a pendent pair can be found the following simple procedure. An ordering

o = (v1,v9,...,v,) of the vertices in an edge-weighted graph (G,w) is called a mazimum
adjacency ordering (MA ordering, for short) if it satisfies
d(G,w)({vlaUZa--'avi—l}avi) Zd(G,w)({vla’U%--'avi—l}avj)a 2<i<j<n, (2)

where d¢ ) (X,Y) denotes 3 {w(e) | e = {z,y} € B, v € X, y € Y}. Tt is shown that an MA
ordering identifies a pendent pair of (G, w) as its last two vertices; i.e., it holds

d(G,w) (Un) = A(G,w) (Unfl,vn). (3)

For example, 0 = (uy,us, ug, us, ug, u2) is an MA ordering of the graph (G,w) in Figure 1(a),
indicating that {ug,us} is a pendent pair.

Based on property (3), one can design an algorithm to compute a minimum cut in a graph
(G,w) by repeating to identify a pendent pair and contract the pair into a single vertex (see
[12, 19]). This yields one of the fastest and simplest minimum cut algorithms, which runs in
O(nm+n?logn) time, where m = 3 ¢ |e|. However, no algorithm that constructs a Gomory-
Hu tree of a given graph (G,w) by using MA orderings is known. Importantly Queyranne
[16] extended the minimum cut algorithm for graphs to a combinatorial strongly polynomial
algorithm for minimizing a symmetric submodular set function. Recently combinatorial strongly
polynomial algorithms for minimizing general submodular set functions have been obtained by
Iwata et al. [5] and Schrijver [18]. However, for minimizing symmetric submodular set functions,
Queyranne’s algorithm remains significantly simpler than these algorithms.

In this paper, we prove that a different structural feature of graphs can be used to design
a simple and efficient connectivity algorithm. We define a new type of special pair of vertices,
called a “flat pair,” based on “extreme subsets” of graphs. We then introduce another ordering of
vertices, called “a minimum degree ordering” (MD ordering) to identify a flat pair. A nonempty
proper subset X of V is called an extreme subset of a graph (G = (V, E), w) if

d(G,w)(Y) > d(g,w)(X) for all nonempty proper subsets Y of X. (4)

We denote by X(G,w) the family of all extreme subsets of (G, w). Any singleton {v}, v € V
is an extreme subset. Note that at least one of extreme subsets corresponds to a minimum
cut, and no two extreme subsets intersect each other. Figure 2(a) shows the extreme subsets of
the graph (G,w) in Fig. 1(a), and Figure 2(b) shows its tree representation that indicates the
inclusionwise relation among the extreme subsets.

Extreme subsets are originally introduced by Watanabe and Nakamura [20] to solve the edge-
connectivity augmentation problem, and extreme subsets of graphs are currently an important



Figure 2: (a) The extreme subsets in X'(G, w) of the graph (G, w) in Fig. 1(a), where the numbers
beside edges indicate their weights and each of the nontrivial extreme subsets X, Xo, X3 €
X(G,w) is depicted by a dotted closed curve; (a) The tree representation for X (G, w).

tool to design efficient algorithms for solving graph connectivity problems such as the source
location problem [9, 17], the minimum k-way cut problem [15], and the dynamic minimum cut
problem [10].

In this paper, we call a pair {u,v} in a graph (G, w), of vertices u and v a flat pair if it
satisfies

d(Gw)(X) > min{d(g ) (z) | z € X} for all X CV with |[X N {u,v}| = 1. (5)

We will prove that such a pair always exists. Observe that no nontrivial extreme subset X
separates a flat pair {u,v}; i.e., {u,v} C X or {u,v} N X = @ holds for any nontrivial extreme
set X. A flat pair must correspond to two leaves u and v with the same parent in the tree
representation of extreme subsets. In Figure 2(a), {us,us} and {us,ug} are flat pairs.

In this paper, we call an ordering 7 = (v1,v,...,v,) of the vertices in a graph (G,w) a
minimum degree ordering (MD ordering, for short) if it satisfies

d(G; 1 w)(vi) = min{dg, | w)(v) [vEV —{v1,v2,...,v1}} 1<i<j<n—1, (6)

where Gj_1 = G — {v1,v9,...,v;—1} denotes the graph obtained from G by removing vertices
v1,V9,...,0;—1 together with all edges incident to them. Thus, an MD ordering can be easily
obtained just by removing a vertex with the minimum degree in the remaining graph. For the
graph in Figure 2(a), m = (uq, ug, us, ug, us, ug) is an MD ordering.

Interestingly the following fact holds: the last two vertices in an MD ordering gives a flat
pair. We prove this, and then show that all extreme subsets of a graph (G, w) can be computed
by using flat pairs in O(mn+n?logn) time. It is already known [9] that all extreme subsets in a
graph can be computed in O(mn +n?logn) time by applying an MA ordering after augmenting
the given graph with a new vertex and edges. However, the augmenting process is rather
artificial, and no direct extension of this algorithm to the case of submodular set functions has
been successful.

Orderings of (6) in a special case where G is an unweighted simple graph are known as §-
slicings [7] or smallest-last orderings [8] which are introduced to study the structure of induced
subgraphs. However, the fact that MD orderings identify flat pairs was not known, and exten-
sions to hypergraphs or set functions are not trivial (see Appendix for a computing process in
the case of hypergraphs).

In this paper, we define flat pairs and MD orderings in terms of set functions on V', and prove
that extreme subsets of symmetric submodular set functions can be computed with the same
time complexity of Queyranne’s algorithm. Since one of the extreme subsets minimizes the set
function, our new algorithm also solves the minimization problem for symmetric submodular
set functions.



The rest of the paper is organized as follows. Section 2 introduces basic notions on sub-
modular or posi-modular set functions, and states our main result in terms of set functions.
Section 3 then proves that the last two elements in an MD ordering in a symmetric and crossing
submodular or intersecting posi-modular set function is a flat pair. Section 4 gives an algorithm
that computes all extreme subsets in such a set function. Section 5 concludes.

2 Preliminaries

Let V' be a finite set, where we denote n = |V'|. A singleton set {v} is called #rivial and may
be written as v. The union of a set X and a singleton {v} may be written as X + v. A subset
X CV separates two elements u,v € V' if | X N {u,v}| = 1. For two subsets X, Y C V', we say
that X and Y intersect each other if X NY # (), X—Y # () and Y — X # () hold, and say that
X and Y cross each other if, in addition, V— (X UY') # () holds. A family X C 2" of subsets
of V is called laminar if no two subsets in X intersect each other.

A set function f on V is a function f : 2V — R. A set function f is called fully (resp.,
intersecting, crossing) submodular if

fX)+fY) = fF(XNY)+ f(XUY) (7)

holds for every (resp., intersecting, crossing) pair of sets X,Y C V.A set function f is called
fully (resp., intersecting, crossing) posi-modular if

FX)+ ) 2 (X =Y)+ f(Y -X) (8)

holds for every (resp., intersecting, crossing) pair of sets X,Y C V' [13]. Notice that the class of
crossing submodular set functions is wider than that of fully submodular set functions. A set
function f is called symmetric if

F(X)=f(V=X) forall X C V. (9)

Every symmetric and fully (resp., intersecting, crossing) submodular set function is fully
(resp., intersecting, crossing) posi-modular.

Given a set function f on V the set function f’ obtained by contracting two elements z,y € V'
into a new element z is defined by V' = (V—{z,y}) U{z} and

) f(X) ifz¢ X CV/
f(X)_{ f(X=2)U{x,y}) ifzeXCV.

A nonempty proper subset X of V' is called an extreme subset of f if
f(Y) > f(X) for all nonempty proper subsets Y of X.

We denote by X(f) the family of all extreme subsets of a set function f. Any trivial set {v},
v € V is an extreme subset. By definition, any nonempty subset X contains an extreme subset
X' with f(X') < f(X). In particular, X(f) contains a minimizer of f, i.e., a subset X with
f(X) =minycov_gg vy f(Y). The family of extreme subsets of a set function becomes laminar
only when it is intersecting posi-modular or symmetric and crossing submodular in the following
sense.

Lemma 1 Let f be a set function on a finite set V', and X(f) be the family of extreme subsets
of f.

(i) If f is intersecting posi-modular or symmetric and crossing submodular, then X(f) is
laminar.



(ii) There is a crossing posi-modular set function f such that X (f) is not laminar.

(iii) There is an asymmetric and fully submodular set function f such that X(f) is not laminar.

PRrROOF: (i) Recall that a symmetric and crossing submodular set function is crossing posi-
modular. Let X, Y € X(f) be two intersecting extreme subsets. By definition we would have
fX)+fY) < f(X-Y)+ f(Y—X), which is a contradiction if f is intersecting posi-modular
or X and Y cross each other. Hence we only have to consider the case where f is symmetric
and X and Y do not cross each other. In this case, we have f(X-Y) = f(V-Y) = f(Y) and
f(Y=X) = f(V-X) = f(X), which again contradicts the above inequality.

(ii) Let V = {v1,v9,v3}, f(X) =1if |[X| =2 and f(X) = 2 otherwise. Since |V'| = 3, there
is no crossing pair, and f is considered as an intersecting posi-modular. However, {X | |X| =
2, X CV} CX(f) holds, and X(f) is not laminar.

(iii) Let (D = (V, A), w) be a digraph such that vertex set V' = {v1,v2,v3,v4} and arc set A =
{a1 = (v1,v3),a2 = (v1,v4),a3 = (v2,v3),a4 = (v2,v4),a5 = (v3,v1),a6 = (v4,v3)}, and d* :
2V i R be the cut function such that d*(X) denotes the number of arcs outgoing from X to
V —X. The set function d* is known to be fully submodular. However, {vy,vs3,v4}, {ve,v3,v4} €
X(f) holds, and X'(f) is not laminar. 1

For a set function f on a set V, let Ty denote the time to evaluate the function value
f(X) of a given subset X C V. In this paper, we prove the next result, which also solves the
minimization of f since X'(f) contains a minimizer of f.

Theorem 2 Let f be a set function on V with n = |V| > 2. If f is symmetric and cross-
ing submodular or intersecting submodular and posi-modular, then the family X (f) of extreme
subsets of f can be found in O(n3Ty) time. I

An important example of symmetric and fully submodular functions is the cut functions
of hypergraphs. Let (G = (V, E),w) be a hypergraph with vertex set V', hyperedge set E (C
2V — ({0} U {{v} | v € V})) and weight function w : E — R,. The cut function of (G,w) is
defined by d(¢ ) : 2V — RT such that

d(GM)(X):Z{w(eHeEE, eNX #0#e—X}, (10)

where we let d( ) (0) = d(g.) (V) = 0. We see that d¢ ) is symmetric and fully submodular.
Figure 2(a) illustrates all extreme subsets in X'(d(¢,,)) for the cut function d(¢ ) of an edge-
weighted graph (G = (V, E), w).

3 Minimum Degree Orderings

To show Theorem 2, this section will introduce a new ordering of V' for set functions f. Before
showing this, we first review a related ordering, called a maximum adjacency ordering. A pair
of elements u,v € V is called a pendent pair of f if

f(X) > min{f(u), f(v)} for all subsets X that separate u and v.

Given a set function f on V with n = |V| > 2, an ordering o = (v1,v2,...,v,) is a mazimum
adjacency ordering (MA ordering, for short) of V' if it satisfies

fi) = fVier +v) > f(vy) = f(Vier +v;), 1<i<j<n, (11)

where Vy = 0 and V; = {vy,v9,...,v;} (1 <i<n—1).
Queyranne [16] obtained the following result.



Theorem 3 [16] For a given symmetric and crossing submodular function f on V with n =
V| > 2, let 0 = (v1,v2,...,v,), be an MA ordering of V.. Then the last two elements v,—1 and
v, give a pendent pair. ]

Based on this, the following results are known.

Theorem 4 [16] For a given symmetric and crossing submodular set function f on V with
n=|V|>2, aset X €2V —{0,V} that minimizes f can be found in O(n3Ty) time. 1

Theorem 5 [13] For a given intersecting submodular and posi-modular set function f on V'
withn = |V| > 2, a set X € 2V — {0, V'} that minimizes f can be found in O(n®Ty) time. g

In this paper, we introduce a new pair and a new ordering of V for set functions f. We call
a pair of elements u,v € V' a flat pair of f if

f(X) > mi)r(lf(m) for all subsets X that separate u and v. (12)
T
Given a set function f on V with n = |V| > 2, we call an ordering 7 = (v1,v2,...,v,) a

minimum degree ordering (MD ordering, for short) of V' if it satisfies
fi) + f(Vica +vi) < flog) + f(Vier +v5), 1<i<j<n, (13)

where Vo = 0 and V; = {vy,v9,...,v;} (1 <i < n—1). It is not difficult to see that, after
choosing V;_1, the next element v; can be chosen from V' —V; by evaluating f(v) + f(Vi—1 + v)
for all v € V — V;_; and that an MD ordering can be found in O(n*T}) time.

We here consider the time complexity for computing an MD ordering of the cut function
d(Gw) of (10) in an edge-weighted hypergraph (G = (V, E),w). For this, we define induced
hypergraphs as follows. For a subset X C V', the hypergraph G(X) induced by X is defined
to be an edge-weighted hypergraph (X, Ax U Bx) with an edge weight function wx : E — R
such that

Ax = {eEE|e§X},
By = {e—X|e€Ee—X#0,lenX|> 2},
w(e) ifeec Ax
wx(e) = {w(e)/2 if e € By.

Note that if G contains only graph edges (i.e., |e] =2, e € F) then Bx = ().

Lemma 6 For an edge-weighted hypergraph (G = (V, E),w), an ordering m = (v1,v2,...,0y)
such that

d(G<V—V'i—1>,U)V7Vi71)(/UZ.) = min{d(G<V_‘/i—l>7wV—Vi71)(v) lveV =V}, i=1,2,...,n—1 (14)

is an MD ordering of the cut function d of G. An MD ordering m of d can be found in O(m +
nlogn) time and O(m + n) space, where n = |V| and m =3 cp|e|.

PROOF: See Appendix. I

An example of computing process of MD orderings in an edge-weighted hypergraph is pre-
sented in Appendix.

As an analogous result to Theorem 3, we show that there exists in a flat pair in a symmetric
and crossing submodular function f and that it can be found by an MD ordering of f.



Theorem 7 For a symmetric and crossing submodular set function f on V with n = |V| > 2,
let m = (v1,v9,...,0,) be an MD ordering of V.. Then the last two vertices v,—1 and v, give a

flat pair. I
We prove Theorem 7 after showing a lemma.

Lemma 8 Let f be a symmetric and crossing submodular set function on V. For a subset
Z CV, let g be a set function on V—Z7 such that g(X) = f(X)+ f(ZUX), X CV—Z. Then
g is symmetric and crossing submodular.

PROOF: Let X be an arbitrary subset of V—2. We show g(X) = ¢g((V—-Z2)—X)). By definition
of g, we have g((V—2)—X)) = f(V-2)=X))+ F(ZU((V=2)-X)) = f(V—(ZUX))+ f(V-X),
which is f(Z U X) 4+ f(X) = ¢g(X) by symmetry of f. Hence g is symmetric. For two crossing
subsets X,Y C V —Z, we have by the submodularity of f

9(X)+9(Y) = f(X)+fY)+f(ZUX)+ [f(ZUY)
> fXNY)+f(XUY)+f(ZU(XNY))+ f(ZUXUY)
> g(XNY)+g(XUY).
Therefore g is crossing submodular. 1

Proof of Theorem 7 For each i =0,1,...,n — 2, we define set function f; of V —X; by
filX) =f(X)+ f(V;UX), X CV-V,

which is symmetric and crossing submodular on V —V; by Lemma 8. By induction on 7 =
n—2,n-—3,...,1,0, we prove that

fi(X) > mi}r(l fi(x) for all X C V-V, that separate v,_1 and v,. (15)
re

Since fo(X) = 2f(X), it suffices to show that (15) holds for i = 0. We easily see that (15) holds
for i = n —2. Now we assume that (15) holds for 7 = j. We prove that (15) holds for i = j — 1.
Let X be an arbitrary subset of V' — V;_; that separates v, 1 and vy,.

Case-1. v; € X: Let * = argmin{f;_i(z) | € X}. For two crossing sets V;_; U X and
Vj + 2*, we have by submodularity of f

fViaUX)+ f(Vi+2%) > f(V;UX) + f(Vima +27).
From this and induction hypothesis f;(X) > f;(«*), we have

fi-1(X) = fija(z®) = f(X)+f(V;o1UX) = f(Vior +2%) — f(z7)
> f(X)+f(V;UX) = f(Vi+2") — f(=")
= fi(X) - fi(z") > 0.

Hence f;_1(X) > fj—1(2*) > mingex fj—1(2).

Case-2. v; € X: By the choice of v;, f; 1(vj) = mingey v; fj—1(z). Consider subset
Y = (V - V;) =X, which separates v,_; and v,, and hence f;_1(Y) > minyecy fj—1(y) holds
by the argument in Case-1. Since f;_1(Y) = fj—1(X) holds by symmetry, we have f; _(X) =
fi-1(Y) > mingey fj—1(y) > fj—1(vj) = mingex fj-1(z), as required.

Therefore, (15) holds for i = j. This proves that (15) holds for 7 = 0, i.e., Theorem 7. 1

(X) +

Corollary 9 Let V be a finite set n = |V| > 2. Ewvery symmetric and crossing submodular
function f on V such that f(v) =k, v € V for some k € R admits a pair {u,v} C 'V that is
pendent and flat at the same time.



PRrROOF: We easily see that any MD ordering 7 of f is also an MA ordering if f(v) =k, v € V.
Hence the last two vertices in 7 is pendent and flat by Theorems 3 and 7. 1

There is a symmetric and crossing submodular function f which has no pair that is pendent
and flat at the same time. For example, the cut function d(g ., in Fig. 2(a) has no such pairs,
since {u3,us} and {us,ue} are the flat pairs of d(q,), but neither of them is pendent.

Corollary 10 Let f be a set function f on'V withn =|V| > 2. If f is symmetric and crossing
submodular or intersecting submodular and posi-modular, then o flat pair of f can be found in
O(n?Ty) time.

Proor: If f is symmetric and crossing submodular, then we compute an MD ordering 7 of f
in O(n*Ty) time and choose the pair of the last two elements in 7, which is flat by Theorem 7.
Consider the case where f is intersecting submodular and posi-modular, where we assume
f(®) = f(V) = —o0o as it does not lose the intersecting submodularity and posi-modularity of
f. In this case, we work with the following set function g : 2"+ s RU {—o00} (where s is a
new element): For each X C V + s, let

£(X) ifs¢ X
g(X):{f(V—(X—s)) X (16)

It is known [13] that, for an intersecting submodular and posi-modular set function f on V,
the above set function g is symmetric and crossing submodular on V' + s. Let m, be an MD
ordering of g, where the first element in m, must be s since g(s) = f(V') = +o0o. Then the last
two elements u,v € V' in 7, give a flat pair of g. We see that {u,v} is also flat in f, since any
subset X C V with f(X) < mingey f(z) would imply g(X) < minge x g(z), contradicting that
{u,v} is flat in g. Therefore, we can find a flat pair in O(n?Ty) time even if f is intersecting
submodular and posi-modular. I

4 Computing Extreme Subsets

This section presents an algorithm for computing all extreme subsets of a set function f by
using flat pairs. For any nonempty subset Y C V, there is an extreme subset Y* € X (f) with
Y* CY and f(Y*) < f(Y). Hence we see that f(Y) > f(X) for all nonempty ¥ C X if and
only if f(Z) > f(X) for all Z C X with Z € X(f). From this observation and the fact that no
nontrivial extreme subset X € X'(f) separates any flat pair, we obtain the following algorithm
for computing all extreme subsets of a set function f that admits flat pairs.

After initializing by X' := {{v} | v € V}} (C X(f)), we repeat a procedure of contracting a
flat pair n—2 times. Let V?, i =n,n—1,...,2, be the set of elements obtained after contracting
the first n — 4 flat pairs, where |V?| = i holds. For each element z € V?, let V[z] C V denote
the set of all elements that have been contracted into z. We maintain the property that

X consists of all extreme subsets X € X'(f) with X CV[z] and z € V". (17)

After contracting a flat pair u’,v* € V* into a single element 2%, we add V[2!] to X if V[2'] €
X(f), so that (17) holds in the resulting set V=1 = (V? — {u’,v'}) U {z'} of elements. We can
test whether V[2] € X(f) or not by checking if f(V[2/]) < miny¢ y.ycvizi) f(Y). To facilitate
this test, we also maintain p(r) = minycy.y v f(Y), 2 € Vi for each i =n,n—1,...,2. The
entire algorithm is described as follows.



Algorithm EXTREMESUBSETS
Input: A set function f on a finite set V', where n = |V| > 2.
Output: A laminar family X C 2Y — {(), V'} of extreme subsets of f.

1 X:={{v}|veV}

2 Let pu(v) := f(v) for allv € V;

3 V=V, fr=f;

4 fori:=nto3do

5 Find a flat pair {u’,v'} of f%;

6 Vili= (V- {ulof)) U i)

7 Let f*~! be the set function on V?~! obtained from f* by contracting

elements u* and v’ into a single element 2*;

8 Let V[2'] C V be the set of all elements that have been contracted
into 24 /* f(V[]) = f-1(21) ¥/

9 if f171(2") < min{p(u®), u(v*')} then

10 X=XU{V[L pl) = fLE)

11 else

12 p() = mindu), p(o)}
13 end if

14 end for

From the above argument, we see that algorithm EXTREMESUBSETS computes the set X'(f)
of all extreme sets of f correctly as long as we can always find a flat pair in line 5. If a given set
function f is symmetric and crossing submodular or intersecting submodular and posi-modular,
then it is not difficult to see that each set function f? obtained from f by contracting elements
remains symmetric and crossing submodular or intersecting submodular and posi-modular.
Therefore, by Corollary 10, we can find a flat pair in O(n?T}) time. Then the running time of
EXTREMESUBSETS is O(n3Ty). This establishes Theorem 2.

By Lemma 6, we easily see that, for hypergraphs, algorithm EXTREMESUBSETS can be
implemented to run in O(n(m + nlogn)) time and O(m + n) space.

Corollary 11 For an edge-weighted hypergraph (G = (V, E),w), the set X(d) of all extreme
subsets can be found in O(n(m + nlogn)) time and O(m + n) space, where n = |V| and

m = ZeeE |e| 1

A computing process of EXTREMESUBSETS applied to an edge-weighted hypergraph is pre-
sented in Appendix.

5 Conclusion

MA orderings were originally introduced to find a forest decomposition of multigraphs in linear
time by Nagamochi and Ibaraki [11]. They realized that the an MA ordering identifies a pendent
pair, and based on this, they proposed an O(nm + n?logn) time algorithm for computing a
minimum cut in an edge-weighted graph without relying on a maximum flow algorithm. The
algorithm is then extended to an O(n3Tf) time algorithm for minimizing a symmetric and
crossing submodular set function by Queyranne [16] and for an intersecting posi-modular set
function by Nagamochi and Ibaraki [13]. For graphs, MA orderings can be used to sparsify
multigraphs [11] and to find a maximum flow between a pendent pair in an edge-weighed
graphs [1]. However, for symmetric submodular or posi-modular set functions, Queyranne’s
and Nagamochi and Ibaraki’s algorithms based on pendent pairs can find a minimizer only.



Our new algorithm beased on flat pairs can find not only a minimizer but also all extreme
subsets. Interestingly, the algorithm works for the class of intersecting posi-modular or sym-
metric and crossing submodular set functions, which is shown by Lemma 1 to be a maximal
class of set functions whose extreme subsets always form laminar.
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Appendix

Proof of Lemma 6
Note that, for each x € V' — V;_1, it holds

d(Gw) () + d(Guw) (Vi1 + 2) — d(Gw) (Vi-1)
= 22{711 |z €e€ E,e CV —V,_1}
+> {wle) |z cecEenVicy #0#en(V =Vig —2)}
= 2) {w(e)|rcec E,enViy =0}
+> {wle) |z cec E,enVicy #0,len (V = V)| > 2}
= 2) {w(e) |[ec Ay_y_,enz#0#en(V - Vioy — )}
+> {wle) |e € By_y,_,eNz #0#en(V —Viy —2)}
= D> {wv_vi_,(e)le€Ay_v,_,UBy_v,_,eNaz#0#en(V -V — 1)}
= 2wy, ;) (@)

Hence any ordering m = (v1,v9,...,v,) in the statement of the lemma is an MD ordering of d.
We consider the time complexity. A hypergraph G = (V, E) can be stored as a set of adjacency
lists Adj(u), v € V in O(m + n) space, by which we can find the set I'¢(u) of all vertices
adjacent to u in O(|I'¢(u)|) time. To obtain an MD ordering of d, we repeat choosing a vertex
u with the minimum degree d(G(v—v,_,)wy v, ) (v) in the current graph G(V—-V;_1) and removing
the vertex v; = u from the graph to obtain G(V —V;). We maintain a data structure @ that
contains all vertices u € V — V; along with the current degree d(G<V,Vi71>,wV_Vi_1)(u), ueV-V,.

After choosing v;, we update the degree d(G<V_Vi_1>7wV7V_71)(u) of each vertex u € T'¢(v;) — V; by
decreasing by

Z{#meeeE,emW:{vi}}JrZ{# |vi € e € Bye = Vi={u}}.

,wva-,l)(“*) from @, and then
delete u* from @Q. It is not difficult to see that the total number of updating degrees is O(m), and
the number of extracting a vertex with the minimum degree from () is n. By using data structure
of Fibonacci heap [4] to maintain elements in @), the above algorithm can be implemented to
run in O(m + nlogn) time and O(m + n) space. 1

We then choose a vertex u* with the minimum degree d(gv_v,,)

An example of MD orderings in an edge-weighted hypergraph

Figure 3(a) shows an edge-weighted hypergraph (G = (V, E'), w), which is represented by a
bipartite graph (V, E, F') in Figure 3(b) in such a way that V and F are the two disjoint vertex
sets in the bipartite graph and two vertices v € V and e € E are adjacent if and only if e is
an edge incident to v in G. Figure 3(b)-(g) show induced hypergraphs (G(V —Vi4), wy_v; ,),
i =1,2,...,6. In this case, we have MD ordering m = (u1,us,us,uq, us, ug) and flat pair
{us, ug}.

A computing process of EXTREMESUBSETS applied to an edge-weighted hypergraph

We apply EXTREMESUBSETS to the edge-weighted hypergraph (G,w) in Figure 3(a). Fig-
ure 4(a)-(f) illustrate its computing process of EXTREMESUBSETS, where (G, w*) denotes the
hypergraph before the iteration for i, i.e., f* = d(Gi wiy holds. Figure 4(g) shows the resulting
family of extreme subsets X' (G, w).
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(e) (GKV-V3), wyyy) 0 (GV-Va wyy,) (&) (GV-V5), wyyy)

Figure 3: Tlustration for computing an MD ordering in a hypergraph; (a) An edge-weighted
hypergraph (G = (V, E),w), where the numbers beside edges indicate their weights; (b) The
bipartite representation (V, E, F') of G, where the numbers beside vertices e € F indicate their
weights w(e) and the numbers beside vertices v € V' indicate their degree d( ., (v); (c)-(g) The
bipartite representations of induced hypergraphs G{(V -V, ), i = 2,3,...,6, where the numbers
beside vertices e € F indicate their weights wy_y,_, (e) and the numbers beside vertices v € V'
indicate their degree d(G(VfVH),wv_Vi_l)(v)'
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. 4 .5
flat pair flat pair

(©) (G*w?) @ (G*w")

flat pair

) (G w?)

(8) MG,w)
Figure 4: (a)-(f) A computing process of EXTREMESUBSETS applied to the edge-weighted hy-

pergraph (G, w) in Figure 3(a); (g) The family of extreme subsets X' (G, w) in the edge-weighted
hypergraph (G, w) in Figure 3(a).
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